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Edwards-Wilkinson equation from lattice transition rules
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Continuum equations of motion for the height fluctuations of lattice growth models are derived from their
transition rules by regularizing and coarse-graining the associated discrete Langevin equations. For models
with random deposition followed by instantaneous relaxation to a neighboring site based on identifying the
local height minimum, our methodology yields the Edwards-Wilkinson equation. The application of this
procedure to other growth models is discussed.
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Driven lattice models are widely used to describe fro
fluctuations during surface growth. The statistical proper
of such models are usually determined by kinetic Mo
Carlo ~KMC! simulations, from which a corresponden
with particular continuum equations of motion can often
inferred from assignments to universality classes@1#. How-
ever, this is largely an empirical exercise and may requ
extensive simulations to eliminate crossover effects@2#. Pro-
posals for establishing more direct associations between
tice models and continuum equations of motion have
cluded phenomenological@3# and symmetry @4–6#
arguments, mappings onto other models@4,7#, real-space
renormalization-group methods@8#, and formal expansions
of discrete equations of motion@7,9–12#. Despite these ef-
forts, the connection between continuum equations and
tice models is seldom unequivocal.

In this paper, we present a method for deriving continu
equations of motion from the transition rules of latti
growth models. Our procedure is based on regularizing
coarse-graining discrete Langevin equations that are
tained from a Kramers-Moyal expansion of the master eq
tion @13# and invoking a limit theorem due to Kurtz@14–16#.
For models in which random deposition is followed by t
instantaneous relaxation of the arriving particle to a nei
boring site based on identifying the local height minimu
@17,18#, we obtain the Edwards-Wilkinson equation@19#.
The coefficients in this equation are determined solely by
parameters of the lattice model. To our knowledge, this is
first time that a stochastic continuum equation of motion
been obtained directly from a lattice model with nonanaly
transition rules.

The method described below can be applied to growth
a d-dimensional lattice, but we focus here on on
dimensional substrates to simplify the calculations. We c
sider a lattice onto which particles are deposited at an a
age ratet0

21 per site. For each deposition event, a site
chosen at random and the deposition site is selected with
specified range of the chosen site according to some crite
based on the local height environment. Once deposited,
particles remain fixed at their positions. If the search ran
for the deposition site extends only to the nearest neighb
the equation of motion for the heighthi at thei th site has the
general form@10,20#

dhi

dt
5Ki

(1)1h i , ~1!
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whereKi
(1) , the first moment of the transition rate, is

Ki
(1)5

1

t0
@wi

(1)1wi 11
(2) 1wi 21

(3) #, ~2!

in which thewi
( j ) embody the local relaxation rules, and th

h i are Gaussian noises that have zero mean, and covari

^h i~t!h j~t8!&5Ki
(1)d i j d~t2t8!. ~3!

With the deposition of complete units replaced by units
sizeV21, whereV is a ‘‘largeness’’ parameter that contro
the magnitude of the fluctuations, and a corresponding tra
formation of the time to maintain the original deposition ra
the resulting equations of motion produce a morphologi
evolution that is statistically equivalent to that of KMC sim
lations @14–16,20#.

In the first model we consider@17#, a particle incident on
a site remains there only if its height is less than or equa
that of both nearest neighbors. If only one nearest neigh
column is lower than that of the original site, deposition
onto that site. However, if both nearest neighbor columns
lower than that of the original site, the deposition site
chosen randomly between the two. These rules can be w
ten in the following form for substitution into Eq.~2!

wi
(1)5u i

1u i
2 ,

wi
(2)5u i

1~12u i
2!1

1

2
~12u i

1!~12u i
2!, ~4!

wi
(3)5u i

2~12u i
1!1

1

2
~12u i

1!~12u i
2! ,

whereu i
65u(hi 612hi) and u(x) is the unit step function,

defined as

u~x!5H 1 if x>0,

0 if x,0.
~5!

In Eq. ~4!, thewi
( j ) express the conditions for a particle inc

dent on sitei to remain there (j 51), to relax to sitei 21
( j 52), or to relax to sitei 11 ( j 53). Thus,Ki

(1) is the total
arrival rate of particles at sitei. The identity
©2003 The American Physical Society02-1
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wi
(1)1wi

(2)1wi
(3)51 ~6!

mandates that deposition is always onto one of these
and thereby ensures that the average deposition rate pe
is t0

21.
The step functions in Eq.~4! reflect the threshold charac

ter of the transition rules. Their presence is typical in mod
whose transition probabilities depend on the local height
vironment@10–12#, but their nonanalyticity presents a maj
obstacle for coarse-graining the discrete equations of mo
~1!-~3!. One way of bypassing this problem is to use an a
lytic expression that reproduces the step function in so
limit but is otherwise amenable to a Taylor expansion. S
eral such regularizations have been suggested, including
pressions based on trigonometric@11,21# and hyperbolic
@9,11,22# tangent functions, and the error function@23#. Here,
we begin by observing thatu is required only at the discret
valueshi 612hi @24#, so we can choose an interpolation b
tween these points at our convenience. Thus, from the
lowing representation of the maximum function@25#

max~x,y!5 lim
e→01

@e ln~ex/e1ey/e!#, ~7!

we construct a corresponding representation ofu(x),

u~x!5max~x1a,0!2max~x,0! ~8!

5 lim
e→01

H e

a
lnFe(x1a)/e11

ex/e11
G J , ~9!

wherea is any constant in the interval (0,1#. In what fol-
lows, we will seta51. This step function and its regulariza
tion are shown in Fig. 1. Expanding the right-hand side
Eq. ~9! as a Taylor series inx yields

ue~x!5A1
Bx

2
2

B2x2

8e
1•••, ~10!

where

A[e lnF1

2
~11e1/e!G , B[

e1/e21

e1/e11
~11!

FIG. 1. The step function in Eq.~8! with a51 ~bold line! and
the regularization in Eq.~9! for the indicated values ofe.
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have the property that

lim
e→01

A5 lim
e→01

B51 ~12!

andA has the asymptotic form

A512e ln 21•••. ~13!

The suitability of this regularization will be discussed belo
By using the expansion in Eq.~10! for each term in Eq.

~4!, Ki
(1) can be written as

Ki
(1)5

1

t0
H 11BD2hi1

1

4
B~12A!D4hi

2
B2~12A!

16e
D2@~D1hi !

21~D2hi !
2#

1
1

8
B2D2@~D1hi !~D2hi !#1•••J , ~14!

where we have defined the difference operatorsD6hi
57hi6hi 61 , D2hi5D1(D2hi)5D2(D1hi), and D4hi
5D2(D2hi). The expansion in Eq.~10! preserves the iden
tity in Eq. ~6! at each order.

We now introduce coarse-grained space and time v
ablesx and t,

x5 i eai , t5ezt, ~15!

whereai is the lateral lattice spacing,z is to be determined,
ande parametrizes the extent of the coarse graining, wite
→0 corresponding to the continuum limit. This parameter
the same as the regularization parameter foru, so the con-
tinuum limit will be takentogetherwith the limit in Eq. ~9!
@25#. The corresponding coarse-grained height functionu is

u~x,t !5eaa'S hi2
t

t0
D , ~16!

wherea' is the vertical lattice spacing,a't/t0 is the aver-
age growth rate, anda is to be determined.

From the transformations in Eqs.~15! and~16!, we obtain

dhi

dt
5

1

t0
1

ez2a

a'

]u

]t
1O~e2z2a! ~17!

and

K (1)~u!5
1

t0
1

e22aai
2B

t0a'
F]2u

]x2 1
1

12
e2~423A!ai

2 ]4u

]x4

2
1

8
e12aB~12A!ai

2 ]2

]x2 S ]u

]xD 2

1
1

8
e22aBai

2 ]2

]x2 S ]u

]xD 2

1•••G . ~18!

The passage from Eqs.~14! to ~18! relies on the presumption
that all derivatives ofu are well defined, i.e., that the discre
2-2
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morphology of steps and terraces described byhi can be
replaced by an analytic function. This can be justified for
interface that has been set into motion in the presenc
fluctuations of whatever nature~e.g., kinetic or thermal!, in
which case asymptotic roughness is guaranteed.

The transformations in Eq.~15! imply that

d i j 5eaid~x2x8!, d~t2t8!5ezd~ t2t8!, ~19!

which, together with Eq.~18!, yield the corresponding trans
formation of the noise covariance

^h i~t!h j~t8!&5e11zaiK
(1)~u!d~x2x8!d~ t2t8!

5e11z
ai

t0
d~x2x8!d~ t2t8!1O~e31z2a!.

~20!

Thus, to leading order ine, the coarse-grained noisej is
given by

j~x,t !5a'e2(11z)/2h i~t!. ~21!

By combining Eqs.~17!–~21!, we obtain

ez2a
]u

]t
1O~e2z2a!5e22a

Bai
2

t0

]2u

]x2 1O~e422a!1e (11z)/2j

1O~e (32a1z)/2!. ~22!

The leading terms in the time derivative,Ki
(1) , and the noise

can be made to scale with the same power ofe by setting
z52 anda5 1

2 . The corrections to these terms then all sc
with higher powers ofe. Thus, by taking the limite→0, and
invoking Eqs. ~12! and ~13!, we obtain the Edwards
Wilkinson equation@19#:

]u

]t
5

ai
2

t0

]2u

]x2 1j, ~23!

where thej are Gaussian noises with zero mean,^j(x,t)&
50, and covariance

^j~x,t !j~x8,t8!&5
a'

2 ai

t0
d~x2x8!d~ t2t8!. ~24!

We now consider a modification of the deposition sc
nario in Eq.~4! @18#. A particle incident on a site remain
there if its height is less than or equal to that of both nea
neighborsor if there is nouniquenearest neighbor site with
a lower height. If one nearest neighbor column is lower th
that of the original site, deposition is onto that site. If bo
nearest neighbor columns are lower than that of the orig
site, then deposition is onto the lowest of these colum
However, if both neighboring column heights are both eq
and lower than that of the original site, the particle rema
on the original site. The analytic expression of these rule

wi
(1)5u i

1u i
21~12u i

2!~12u i
1!~uk11,2

2 1uk21,2
1 21!,
02510
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wi
(2)5u i

1~12u i
2!1~12u i

2!~12u i
1!~12uk11,2

2 !,
~25!

wi
(3)5u i

2~12u i
1!1~12u i

2!~12u i
1!~12uk21,2

1 !,

whereu i , j
6 5u(hi 6 j2hi) and we have used the same labeli

convention for thewi
( j ) as in Eq.~4!. By following the steps

leading to Eq.~14!, we obtain

Ki
(1)5

1

t0
H 11B@112~12A!2#D2hi1

1

2
B~12A!D4hi

2
1

4
B2~12A!F12

~122A!

2e GD2@~D2hi !
21~D1hi !

2#

1
1

4
B2FA1

~12A!2

e GD2@~D2hi !~D1hi !#•••J . ~26!

Note that, although the coefficient of the second difference
this expression differs from that in Eq.~14! because of the
modified transition rules, the difference is, according to E
~13!, of ordere2. Hence, when the coarse-graining transfo
mations in Eqs.~15! and ~16! are applied to this expressio
and the continuum limit taken, we again obtain the Edwar
Wilkinson equation~23! and ~24!. Thus, not only are the
exponents the same in the two models, but the continu
equations of motion are identical.

There is an alternative method of deriving the Edwar
Wilkinson equation from the regularized Langevin equatio
that makes a more direct connection to the Van Kamp
system size expansion@13#. In the spirit of the central limit
theorem, we first write the coarse-grained height function

a'S hi2
t

t0
D5e21U~x,t !1e21/2u~x,t !, ~27!

wherex and t are defined in Eq.~15!. The functionU repre-
sents the macroscopic morphology of the system, whilu
corresponds to fluctuations of this morphology on a fin
‘‘mesoscopic’’ scale. By using the transformations in Eq
~17!–~21!, the leading terms, of ordere, yield a deterministic
equation forU,

]U

]t
5

ai
2

t0

]2U

]x2 , ~28!

which is, of course, the heat equation. The fluctuation c
rections to this deterministic evolution of the interface,
ordere3/2, are described by the Edwards-Wilkinson equati
for u, as given in Eqs.~23! and ~24!. The equation forU
states that, if the surface is initially macroscopically flat, th
it remains so for all times. Moreover, any modulation of t
surface profile decays with time. Because the Edwar
Wilkinson equation is linear, Eq.~28! is the same as tha
obtained by averaging Eq.~23! over the noise

We return now to our implementation of the step functi
and its regularization. The most apparent difference betw
the step function in Eq.~8! and the definition in Eq.~5! is
2-3
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that the former is acontinuousfunction. This results in finite
values for the firsttwo terms in the expansion in Eq.~10! as
e→0, with

lim
e→01

A5u~0! ~29!

and

1

2
lim

e→01

B5
1

2F lim
x→02

S du

dxD1 lim
x→01

S du

dxD G ~30!

corresponding to the average of the left- and right-hand
rivatives ofu at x50. In contrast, for other regularization
@9,11,21–23#, B either diverges or vanishes, depending
whether the discontinuity of the step function is at the orig
or shifted away. One consequence of our choice is that
exponentsa andz required to obtain the Edwards-Wilkinso
d.

,

nd

02510
e-

e

equation are the same as those derived from a scaling an
sis of this equation@1#. Further discussion of different regu
larization schemes for step functions will be presented e
where.

Finally, we consider the applicability of our methodolog
to other lattice models. As the standard scaling analysis@1#
of continuum models indicates, the scaling transformatio
we used in the passage from the discrete regularized e
tions of motion to the Edwards-Wilkinson equation cann
be expected to be valid for inherently nonlinear models in
spatial dimensions. In such cases, an expansion such as
in Eq. ~18! provides initial conditions for the coefficients i
an equation of motion to which a renormalization-gro
transformation is applied. But even this represents an
vance because the presence or absence of particular te
and their sign, can qualitatively influence the lon
wavelength behavior of the growth front@11,26#.
er.
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